Multi-Event Buffering

For PHENIX Muon Tracking System

Imran Younus
University of New Mexico

Outline

some facts....

Analog Memory Units

Signal samples are stored in Analog Memory Units. On Level 1 trigger, signal from corresponding unit is digitized.

MuTr Front End Electronics

- Each data "packet" contains 128 channels
 - 2 Cathode Read Out Circuit Boards, 4 AMU/ADC chips.
 - 1 Controller Board, FPGA chip,
- FPGA code contains:
 - Timing logic, AMU cell manager, etc....
- Current FPGA code (ver. 124) cannot handle Multi-event buffering.
- New FPGA code (ver. 139) worked perfectly on test bench.

AMU Cell Manager

Conversion Time

single event; random triggers.

5 event buffering, random triggers.

4 even buffering, at 1Hz.

4 even buffering, at 10kHz.

Online Monitoring.

AMU cell pattern can be "predicted" by looking at the time between events!!

Caveat: The time taken by a cell to become available is not fixed! Can vary between 110nS – 6.2uS (even though the conversion time is fixed).

Online Monitoring.

AMU cell distribution can be added for "experts".

So, where we're now?

- FGPA ver139 worked perfectly on test bench (with 10MHz clock).
- Downloading FPGA through ARCnet was successful (Thanks to John H. and Olivier).
- BUT the code didn't work in the detector (with 9.4MHz clock).
- More "R&D", that's where we're now.